7x−√3x2−8x+1x=(8√x+√x)27x2−√3x2−8x+1x=(8+x√x)27x2−√3x2−8x+1x=(8+x)2x7x2−√3x2−8x+1=(8+x)2(x≠0)7x2−√3x2−8x+1=64+x2+16x6x2−16x+2−√3x2−8x+1=662(3x2−8x+1)−√3x2−8x+1=662(√3x2−8x+1)2−√3x2−8x+1=66
Put t=√3x2−8x+1
2t2−t=66
2t2−t−66=0
2t2−12t+11t−66=0
2t(t−6)+11(t−6)=0(2t+11)(t−6)=0t=6,−112
√3x2−8x+1=6,−112
3x2−8x+1=36,1214
3x2−8x+1=36
3x2−8x−35=0
3x2−15x+7x−35=0
3x(x−5)+7(x−5)=0(3x+7)(x−5)+0
⇒x=5,−73
Also, 3x2−8x+1=1214
12x2−32x+4=121
12x2−32x−117=0
x=32±√1024+561624=32±√664024
x=32±4√41524
x=8±√4156
So the values of x are −73,5,8±√4156