Solve the following equations:
9x2+33x−12=12xy−4y2+22y,x2−xy=18.
Given, x2−xy=18 ........(i)
Also given 9x2+33x−12=12xy−4y2+22y
⇒9x2+4y2−12xy+33x−22y−12=0⇒(3x−2y)2+11(3x−2y)−12=0⇒(3x−2y)2−(3x−2y)+12(3x−2y)−12=0⇒(3x−2y)((3x−2y)−1)+12((3x−2y)−1)=0⇒(3x−2y+12)(3x−2y−1)=0⇒3x−2y−1=0⇒y=3x−12
Substituting in (i), we get
x2−x(3x−12)=18⇒2x2−3x2+x=36⇒x2−x+36=0⇒x=1±√1−4(1)(36)2⇒x=1±√−1432⇒y=3x−12⇒y=32(1±√−1432)−12⇒y=1±3√−1434
Also 3x−2y+12=0
⇒y=3x+122
Substituting in (i), we get
x2−x(3x+122)=18⇒2x2−3x2−12x=36⇒x2+12x+36=0⇒(x+6)2=0⇒x=−6
Then y=3(−6)+122=−3
So, the values of x are 1±√−1432,−6 and the corresponding values of y are 1±3√−1434,−3.