Solve the following equations:
9x+y−8z=0,
4x−8y+7z=0,
yz+zx+xy=47.
Let 9x+y−8z=0 .......(i)
4x−8y+7z=0 .......(ii)
yz+zx+xy=47 .......(iii)
Solving (i) and (ii) by cross multiplication
x7−64=y−32−63=z−72−4=k⇒x−57=y−95=z−76=k⇒x=−57k,y=−95k,z=−76k .........(iv)
Substituting x,y and z in (iii), we get
(−95k)(−76k)+(−76k)(−57k)+(−57k)(−95k)=47⇒16967k2=47⇒k2=4716967=1361⇒k=±119
Substituting k in (iv), we get
⇒x=±3,y=±5,z=±4
which is the required solution.