Solve the equations:
(i) 5x = 3x + 24;
(ii) 8t + 5 = 2t − 31;
(iii) 7x − 10 = 4x + 11;
(iv) 4z + 3 = 6 + 2z;
(v) 2x − 1 = 14 − x;
(vi) 6x + 1 = 3(x − 1) + 7;
(vii) ;
(viii) ;
(ix) 3(x + 1) = 12 + 4 (x − 1);
(x) 2x − 5 = 3(x − 5);
(xi) 6(1 − 4x) + 7(2 + 5x) = 53;
(xii) 3(x + 6) + 2 (x + 3) = 64;
(xiii) ;
(xiv) .
Solve :
(i) 13x−6=52(ii) 2x3−3x8=712(iii) (x+2)(x+3)+(x−3)(x−2)−2x(x+1)=0(iv) 110−7x=35(v) 13(x−4)−3(x−9)−4(x+4)=0(vi) x+7−8x3=17x6−5x8(vii) 3x−24−2x+33=23−x(viii) x+26−(11−x3−14)=3x−412(ix) 25x−53x=115(x) x+23−x+15=x−34−1(xi) 3x−23+2x+32=x+76(xii) x−x−12=1−x−23(xiii) 9x+72−(x−x−27)=36(xiv) 6x+12+1=7x−33
Solve the following equations:
(i)3x+1=27×34(ii)42x=(3√16)−6y=(√8)2(iii)3x−1×52y−3=225(iv)8x+1=16y+2 and (12)3+x=(14)3y(v)4x−1×(0.5)3−2x=(18)x(vi)√ab=(ba)1−2x,where a,b are distinct positive primes.