wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
(a+x)23+4(ax)23=5(a2x2)13.

Open in App
Solution

(a+x)23+4(ax)23=5(a2x2)13

(a+x)23+4(ax)23=5((a+x)(ax))13

(a+x)23((a+x)(ax))13+4(ax)23((a+x)(ax))13=5

(a+xax)13+4(axa+x)13=5

Let (a+xax)13=t then (axa+x)13=1t

t+41t=5

t25t+4=0

t24tt+4=0

t(t4)1(t4)=0

(t1)(t4)=0

t=1,4

Now, (a+xax)13=t

(a+xax)=t3

For t=1

a+xax=1

x=0

For t=4

a+xax=64

64a64x=a+x

x=63a65

So the values of x are 0 and 63a65


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon