(a+x)23+4(a−x)23=5(a2−x2)13
(a+x)23+4(a−x)23=5((a+x)(a−x))13
(a+x)23((a+x)(a−x))13+4(a−x)23((a+x)(a−x))13=5
(a+xa−x)13+4(a−xa+x)13=5
Let (a+xa−x)13=t then (a−xa+x)13=1t
∴t+41t=5
t2−5t+4=0
t2−4t−t+4=0
t(t−4)−1(t−4)=0
(t−1)(t−4)=0
t=1,4
Now, (a+xa−x)13=t
⇒(a+xa−x)=t3
For t=1
a+xa−x=1
⇒x=0
For t=4
a+xa−x=64
64a−64x=a+x
⇒x=63a65
So the values of x are 0 and 63a65