Solve the following equations and verify your answer :
(x+1x−4)2=x+8x−2
We have (x+1x−4)2=x+8x−2
⇒(x+1)2(x−4)2=(x+8)(x−2)
By cross multiplication, we have
(x+1)2(x−2)=(x−4)2(x+8)
⇒(x2+1+2x)(x−2)=(x2+16−8x)(x+8)
[Using the identity(a+b)2=a2+b2+2ab]
⇒x3−2x2+2x2−4x+x−2=x3+8x2−8x2−64x+16x+128
⇒x3−3x−2=x3−48x+128
⇒x3−3x−x3+48x=128+2
By transposition, we have
⇒45x=130
⇒x=13045=269
∴x=269
Verification (putting the value of x in L.H.S and R.H.S ) :
L.H.S.=(x+1x−4)2={269+1}2{269−4}2
={26+99}2{26−369}2={359}2{−109}2
=(359×9−10)2=(−72)2=494
R.H.S.=x+8x−2=269+8269−2=26+72926−189=98989
=989×98=494
∴L.H.S=R.H.S.