Solve the following equations and verify your answer :
(x+2)(2x−3)−2x2+6x−5=2
(x+2)(2x−3)−2x2+6x−5=21
By cross multiplication
(x+2)(2x−3)−2x2+6=2(x−5)2x2−3x+4x−6−2x2+6=2x−10x=2x−10⇒x−2x=−10⇒−x=−10⇒x=10∴x=10
Verification,
L.H.S.=(x+2)(2x−3)−2x2+6x−5=(10+2)(2×10−3)−2(10)2+610−5=12(20−3)−2×(100)+65=12×17−200+65=204−200+65=105=2=R.H.S.