Given 3t+116−2t−37=t+38+3t−114
⇒3t+116−t+38=2t−37+3t−114
⇒3t+116−(t+3)×28×2=(2t−3)×27×2+3t−114
⇒3t+116−2(t+3)16=2(2t−3)14+3t−114
⇒3t+1−2(t+3)16=2(2t−3)+3t−114
⇒3t+1−2t−616=4t−6+3t−114
⇒t−58=7t−77
⇒t−58=7(t−1)7
⇒t−5=8t−8
⇒7t=−5+8
∴t=37
Question 74
Solve the following:
3t−23+2t+32=t+76