a+2x+√a2−4x2a+2x−√a2−4x2=5xa
a+2x+√a+2x√a−2xa+2x−√a+2x√a−2x=5xa
√a+2x+√a−2x√a+2x−√a−2x=5xa
Applying Componendo and Dividendo
√a+2x√a−2x=5x+a5x−a
Squaring both sides
a+2xa−2x=25x2+a2+10ax25x2+a2−10ax
a+2xa−2x=(25x2+a2)+10ax(25x2+a2)−10ax
Again applying Componendo and Dividendo
a2x=25x2+a210ax
a2=25x2+a210a(x≠0)
10a2=50x2+2a2
50x2=8a2x2=4a225
⇒x=±2a5