Solve the following equations:
√x−√y√x+√y+√x+√y√x−√y=174, x2+y2=706
Given equations are, x2+y2=706 .........(i)
and √x−√y√x+√y+√x+√y√x−√y=174 .....(ii)
(√x−√y)2+(√x+√y)2(√x+√y)(√x−√y)=174⇒x+y−2√x√y+x+y+2√x√yx−y=174⇒2x+2yx−y=174⇒8x+8y=17x−17y⇒9x=25y⇒x=259y
Substituting in (i), we get
(259y)2+y2=706⇒70681y2=706⇒y2=81⇒y=±9
Substituting y in (i), we get
x2+(±9)2=706⇒x2=706−81⇒x2=625⇒x=±25