Solve the following equations:
x2y+y2x=92,
3x+y=1.
Given, 3x+y=1
⇒x+y=3 .......(i)
Also given, x2y+y2x=92
⇒x3+y3xy=92⇒2(x3+y3)=9xy
Using a3+b3=(a+b)(a2+b2−ab)
2(x+y)(x2+y2−xy)=9
Substituting (i), we get
2(3)(x2+y2−xy)=9
⇒2(x2+y2−xy)=3xy
⇒2((x+y)2−3xy)=3xy
⇒2(9−3xy)=3xy⇒9xy=18
⇒xy=2
⇒y=2x
Substituting y in (i), we have
x+2x=3⇒x2−3x+2=0⇒x2−2x−x+2=0⇒x(x−2)−1(x−2)=0⇒(x−1)(x−2)=0⇒x=1,2
Now y=2x
x=1⇒y=21=2x=2⇒y=22=1