x3+1x2−1=x+√6x(x+1)(x2+1−x)(x+1)(x−1)=x+√6x(x2+1−x)x−1=x+√6x
where (x≠1)
(x2+1−x)x−1−x=√6xx2+1−x−x2+xx−1=√6x1x−1=√6x√x=√6(x−1)
Squaring both sides, we get
x=6(x−1)2x=6x2+6−12x6x2+6−13x=06x2−9x−4x+6=03x(2x−3)−2(2x−3)=0(3x−2)(2x−3)=0⇒x=23,32
Solve the following equations:2x−3x−1+1=6x−x2−6x−1