5x−7y=4......(i)
x3+y3(x+y)2+x3−y3(x−y)2=43x8
(x+y)(x2+y2−xy)(x+y)2+(x−y)(x2+y2+xy)(x−y)2=43x8
x2+y2−xyx+y+x2+y2+xyx−y=43x8
x2+y2+2xy−3xyx+y+x2+y2−2xy+3xyx−y=43x8
(x+y)2−3xyx+y+(x−y)2+3xyx−y=43x8
x+y−3xyx+y+x−y+3xyx−y=43x8
3xy(1x−y−1x+y)=43x8−2x
6xy2x2−y2=27x8
6xy2x2−y2−27x8=0
3x(2y2x2−y2−98)=0
⇒x=0
substituting x in (i)
⇒y=−47
Also 2y2x2−y2−98=0
2y2x2−y2=98
16y2=9x2−9y2
25y2=9x2
y2=925x2
⇒y=±35x
susbstituting y in (i)
(1) y=35x
5x−7.35x=4
4x5=4
x=5
⇒y=3
(2) y=−35x
5x−7(−35x)=4
46x5=4
x=1023
⇒y=−623
So the values of x are 0,5,1023 and corresponding values of y are −47,3,−623