Solve the following equations: x−aa2+y−bb2=1x−b−1y−a−1a−b=0.
Open in App
Solution
⟹x−aa2=b−yb2 ⟹x=a+a2b2(b−y) Putting in equation (II) ⟹1a+a2b2(b−y)−b−1y−a=1a−b ⟹1ab2+a2b−a2y−b3−1y−a=1a−b ⟹y−a−ab2−a2b+a2y+b3(y−a)(ab2+a2b−a2y−b3) ⟹ On solving we get:- x=a2b,y=b2a x=2ab−a2b,y=b(2a−b)a