Solve the following equations:x+√x2−1x−√x2−1+x−√x2−1x+√x2−1=98
Given, x+√x2−1x−√x2−1+x−√x2−1x+√x2−1=98
⇒(x+√x2−1)2+(x−√x2−1)2(x+√x2−1)(x−√x2−1)=98
⇒x2+x2−1+2x√x2−1+x2+x2−1−2x√x2−1x2−(x2−1)=98
⇒4x2−2=98
⇒4x2=100
⇒x2=25
⇒x=±5