x+√x2−1x−√x2−1−x−√x2−1x+√x2−1=8x√x2−3x+2(x+√x2−1)2−(x−√x2−1)2(x−√x2−1)(x+√x2−1)=8x√x2−3x+2x2+x2−1+2x√x2−1−x2−x2+1+2x√x2−1x2−x2+1=8x√x2−3x+24x√x2−1=8x√x2−3x+2x√x2−1=2x√x2−3x+2=0x√x2−1−2x√x2−3x+2=0x(√x2−1−2√x2−3x+2)=0
⇒x=0 and √x2−1−2√x2−3x+2=0
√x2−1=2√x2−3x+2x2−1=4(x2−3x+2)3x2−12x+9=03x2−9x−3x+9=03x(x−3)−3(x−3)=0(3x−3)(x−3)=0⇒x=1,3
So the values of x are 0,1 and 3