2sin3x−1sinx=2cos3x+1cosx
⇒(2sin3x.sinx−1)/sinx=(2cos3x.cosx+1)/cosx
⇒2sin3x.sinx.cosx−cosx=2cos3x.cosx.sinx+sinx
⇒sin3x.sin2x−cosx=cos3x.sin2x+sinx
2sin3x−1sinx=2cos3x+1cosx
⇒2sin3x−2cos3x=1/sinx+1/cosx
⇒2(3sinx−4sin3x)−2(4cos3x−3cosx)=(sinx+cosx)/sinx.cosx
⇒6(sinx+cosx)−8(sin3x+cos3x)=(sinx+cosx)/sinx.cosx
⇒6(sinx+cosx)−8(sinx+cosx)(1−sinx.cosx)
=(sinx+cosx)/sinx.cosx
⇒(sinx+cosx)[6−8(1−sinx.cosx)−1sinx.cosx]=0
⇒(sinx+cosx)(8sinx.cosx−2−1sinx.cosx)=0
∴sinx+cosx=0 or sinx.cosx=1/2 or sinx.cosx=−1/4
For sinx+cosx=0 or sinx.cosx=1/2
⇒tanx=−1⇒sin2x=1
x=kπ−π/4⇒2x=2xπ+π/2
kϵ integers.
x=nπ+π/4
nϵ integers
For sinx.cosx=−1/4
⇒sin2x=−1/2
2x=mπ+π/6(−1)m
x=mπ2+(−1)mπ12