wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
2sin3x1sinx=2cos3x+1cosx.

Open in App
Solution

2sin3x1sinx=2cos3x+1cosx
(2sin3x.sinx1)/sinx=(2cos3x.cosx+1)/cosx
2sin3x.sinx.cosxcosx=2cos3x.cosx.sinx+sinx
sin3x.sin2xcosx=cos3x.sin2x+sinx
2sin3x1sinx=2cos3x+1cosx
2sin3x2cos3x=1/sinx+1/cosx
2(3sinx4sin3x)2(4cos3x3cosx)=(sinx+cosx)/sinx.cosx
6(sinx+cosx)8(sin3x+cos3x)=(sinx+cosx)/sinx.cosx
6(sinx+cosx)8(sinx+cosx)(1sinx.cosx)
=(sinx+cosx)/sinx.cosx
(sinx+cosx)[68(1sinx.cosx)1sinx.cosx]=0
(sinx+cosx)(8sinx.cosx21sinx.cosx)=0
sinx+cosx=0 or sinx.cosx=1/2 or sinx.cosx=1/4
For sinx+cosx=0 or sinx.cosx=1/2
tanx=1sin2x=1
x=kππ/42x=2xπ+π/2
kϵ integers.
x=nπ+π/4
nϵ integers
For sinx.cosx=1/4
sin2x=1/2
2x=mπ+π/6(1)m
x=mπ2+(1)mπ12

1137941_887954_ans_fcfd1ec1109b46a587f7694da4c648ba.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon