wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
4sin2x3sin(2xπ2)=5.

Open in App
Solution

4sin2x3sin(2xπ2)=5
4sin2x3sin[(π22x)]=5
4sin2x+3sin(π22x)=5{sin(θ)=sinθ}
4sin2x+3cos2x=5....{sin(π2θ)=cosθ}
4(2sinx.cosx)+3(12sin2x)=5...{sin2θ=2sinθ.cosθcos2θ=12sin2θ}
8sinx.cosx+36sin2x=5
8sinx.cosx6sin2x2=0
Divide both sides by cos2x we get
8sinx.cosxcos2x6sin2xcos2x2cos2x=0
8tanx6tan2x2sec2x=0
8tanx6tan2x2(1+tan2x)=0...{sec2θ=1+tan2θ}
8tanx6tan2x22tan2x=0
8tanx8tan2x2=0
8tan2x8tanx+2=0
8tan2x4tanx4tanx+2=0
4tanx(2tanx1)2(2tanx1)=0
(2tanx1)(4tanx2)=0
2tanx1=0 or 4tanx2=0
tanx=1/2 or tanx=1/2
tanx=1/2
x=tan1(12)

1124367_887833_ans_c6dd63cd955541b88dcf87454cda7aff.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon