1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Basic Inverse Trigonometric Functions
Solve the fol...
Question
Solve the following equations.
4
s
i
n
3
x
+
3
=
√
2
s
i
n
3
x
+
2
.
.
Open in App
Solution
4
s
i
n
3
x
+
3
=
√
2
s
i
n
3
x
+
2
⇒
t
=
s
i
n
3
x
⇒
4
t
+
3
=
√
2
t
+
2
⇒
16
t
2
+
9
+
24
t
=
2
t
+
2
⇒
16
t
2
+
22
t
+
7
=
0
⇒
16
t
2
+
8
t
+
14
t
+
7
=
0
⇒
8
t
(
2
t
+
1
)
+
7
(
2
t
+
1
)
=
0
t
=
−
1
/
2
or
t
=
−
7
/
8
s
i
n
3
x
=
−
1
/
2
or
s
i
n
3
x
=
−
7
/
8
3
x
=
x
π
+
(
−
1
)
n
(
π
/
6
)
or
3
x
=
x
π
+
(
−
1
)
n
s
i
n
−
1
(
−
7
/
8
)
x
=
n
π
3
−
(
−
1
)
n
π
/
18
or
x
=
n
π
3
+
(
−
1
)
n
s
i
n
−
1
(
−
7
/
8
)
3
Suggest Corrections
0
Similar questions
Q.
Solve the following equations.
2
s
i
n
3
x
−
1
s
i
n
x
=
2
c
o
s
3
x
+
1
c
o
s
x
.
Q.
Solve
2
sin
3
x
=
cos
x
Q.
Solve for x,
2
s
i
n
3
x
=
c
o
s
x
.