8cos6x=3cos4x+cos2x+4
8cos6x=3(2cos2x−1)+2cos2x−1+4
[As cos2x=2xos2x−1]
8cos6x=6cos22x−3+2cos2x−1+4
8cos6x=6(2cos2x−1)2+2cos2x
solving we get
4cos6x−12cos4x+11cos2x−3=0
take cos2x=t
then,
4t3−12t2+11t−3=0...(1)
Now put random value of t like −1,0,−1
If that satisfy eqn then root
t=1
4(1)3−12(1)2+11(1)−3
=0
then t=1 is a root of eqn(1)
(t−1)(4t2−8t+3)=0
(t−1)(t2−2t+3/4)=0
(t−1)(t−1/2)(t−3/2)=0
then
cos2x=1 OR cos2x=12 OR cos2x−34
x=cos−1(+1)
x=cos−1(±1√2)x=cos−1(√32)
t=2±√4−4.3/42
t=2±12
t=3/2 OR 1/2