wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
cos(2sinx+(1+3)cosx)=sin((13)cosx).

Open in App
Solution

cos(2sinx+(1+3)cosx)=sin(13cosx)
sin(π2+x)=cox
we can write
sin(π2+2sinx+(1+3)cosx)=sin((13)cosx)
π2+2sinx+(1+3)cosx=((13)cox)
π2+2sinx=(13)cosx(1+3)cosx
π2+2sinx=23cosx
π2+2sinx+23cosx=0
2(sinx+3cosx)=π/2
2×2(12sinx+32cosx)=π2
4(cos(π3)sinx+sinπ3cosx)=π2
sinacosb+cosasinb=sin(a+b)
i.e
4sin(π3+x)=π3
sin(π3+x)=π8
π3+x=sin1(π/8)
x=π3sin1(π/8)
x=π3sin1(π/8)

1126159_888270_ans_2681db20920d462fae1986259db5324c.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon