wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
cos3xtan5x=sin7x.

Open in App
Solution

cos3x×tan5x=sin7x=>cos3x×sin5xcos5x=sin7x=>cos3x×sin5x=sin7x×cos5x=>sin5x×cos3x=sin7x×cos5x
Using sinA+sinB=2sin(A+B2)×cos(AB2)
We can write
sin8x+sin2x=sin12x+sin2x=>sin12xsin8x=0=>2sin2xcos10x=0
sin2x=0cos10x=0=>2x=nπ=>10x=(2m+1)π2=>x=nπ2=>x=(2m+1)π20
m,n belongs to integers

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon