wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
cos6xsin6x=138cos22x.

Open in App
Solution

cos6xsin6x=138cos22x
(cos3x)2(sin3x)2=(13/8)cos22x
(cos3xsin3x)(cos3x+sin3x)=13/8cos22x
(cosxsinx)(cosx+sinx)(1sin.cosx)(1+sinx.cosx)=13/8cos22x
(cos2xsin2x)(1sin2x.cos2x)=13/8cos2x
cos2x(1sin22x4)=13/8cos22x
cos2x(4sin22x)4=138cos22x
say
t=cos2x
2t(41+t2)=13t2
2t313t2+6t=0
t(2t1)(t6)=0
t=0
cos2x=0
x=(2x+1)π/4
t=1/2
x=xπ±π6
t=1/6
cos2x=1/6
2x=2xπ±cos11/6
x=xπ±cos11/62

1138002_888060_ans_c7c42089f4f2455e87f9ef874f64ca54.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon