wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
(cos6x1)cot3x=sin3x.

Open in App
Solution

(cos6x1)cot3x=sin3x
(cos6x1)cos3xsin3x=sin3x
(cos6x1)cos3x=sin23x
(2cos23x2)cos3x=1cos23x
Substitute
cos3x=t
2(t21)t=1t2
2t32t=1t2
2t3+t22t1=0
t=1 is solution of the above equation
(t1)(2t2+3t+1)=0
(t1)(2t2+t+2t+1)=0
(t1)[t(2t+1)+1(2t1)]=0
(t1)(t+1)(2t+1)=0
t=1 or t=1 or t=1/2
cos3x=1 or cos3x=1 or cos3x=1/2
3x=2nπ3x=(2k+1)π3x=2nπ±2π3
x=2nπ3x=(2k+1)π3x=2mπ3±2π39
xϵz kϵz mϵz

1137936_887948_ans_e860d899c1414e779a992f4c1b7a6b8c.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon