cos(π2−3x)−sin2x=0.
sin3x−sin2x=0....{∵cos(π2−θ)=sinθ}...(1)
∵sin(A+B)=sinA.cosB+sinB.cosA
∵sin(A−B)=sinA.cosB−sinB.cosA
∴sin(A+B)−sin(A−B)=2sinB.cosA...(2)
In this cose,
A+B=3x and A−B=2x...(3)
adding both are get
A+B=3x
A−B=2x
_________
2A5x
⇒A=5x2 and B=x2...(4)
from eqn (1), (2), (3) & (4)
sin3x−sin2x=2sin(x2)cos(5x2)=0
⇒sin(x2)=0 or cos(5x6)=0
we know, General solution for
sinθ=0⇒{θ=nπ,nϵZ}Z integer {0,±1,±2,±3...}
for sin(x2)⇒{x2=nπ,nϵZ}
⇒{x=2nπ,nϵZ}
also we know that, General solution for
cosθ=0⇒{θ=(2n+1)π2,nϵZ}
∴ for cos(5x2)⇒{5x2=(2n+1)π2,nϵZ}
⇒{x=(2n+1)π5,nϵZ}
our solution is : x{(2n+1)π5,2πn/nϵZ}