wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
|cot(2xπ2)|=1cos22x1.

Open in App
Solution

|cot(2xπ2)|=1cos22x1...(1)
cot(2xπ2)=tan2x,1cos22x=sec2(2x)
i-e put in eq(1)
|tan2x|=sec2(2x)1
|tan2x|=tan2(2x) [tan2θ=sec2θ1]
We know square quantity only have
positive value
i.e.
tan2x=tan2(2x)
tan2xtan2(2x)=0
tan2x(1tan(2x))=0...(2)
Now solving the eq (2)
tan2x=0 or 1tan2x=0
Here x Or 1=tan2x
which is not possible Or 2x=tan1(1)
i.e 2x=π/4
x=π/8

1126156_888279_ans_88968bfe219b4f4cb28551769440bd7c.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon