wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
log5(2x+3)1log5(2x+3)+35log5(2x+3)=0.

Open in App
Solution

log5(2x+3)1log5(2x+3)+35log5(2x+3)
5log5(2x+3)5(log5(2x+3))2+33log5(2x+3)=0
5(log5(2x+3))22log5(2x+3)+3=0
Let log5(2x+3)=y
5y22y+3=0
5y25y3y+3=0
5y(y1)3(y1)=0
y=1 or 5y3=0
log5(2x+3)=1 y=35
So, 2x+3=5 or, log5(2x+3)=35
2x=2 2x+3=53/5
x=1 x=53/532

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon