log2(3−x)−log2⎛⎜
⎜
⎜⎝sin3x45−x⎞⎟
⎟
⎟⎠=12+log2(x+y)
We know that
logmn=log(m)+log(n)...(i)
log(m/n)=,log(m)−log(n)...(ii)
Now,
log(3−x)2−log(sin3π45−x)2−log(x+y)2=12
Using properties (i) & (ii)
log2(3−x)(5−x)(x+7)sin(3x4)=12
⇒√2(3−x)(5−x)(x+7)=√2
(∵sin3π4=1√2)
⇒(3−x)(5−x)=(x+7)
⇒x2−9x+8=0
x=1,8 ( 8 is not valid)
Checking the solution by
putting in original equation,
x=8 is not valid solution
(log can't have negative value)
∴ Answer :1