wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin3xcos3x=1+sinxcosx.

Open in App
Solution

sin3xcos3x=1+sinxcosx.
Solution:- We are given that,
sin3xcos3x1+sinxcosx
now, we know that a3b3=(ab)(a2+ab+b2)
So,
(sinxcosx)(sin2x+sinxcosx+cos2x)=1+sinxcosx
(sinxcosx)(1+sinxcosx)(1+sinxcosx)=0
(sin2x+cos2x=1)
(1+sinxcosx)[(sinxcosx)1]=0
So,
1+sinxcosx=0 or sinxcosx=1
2+2sinxcosx=0 or 1/2(sinxcosx)=1/2
( multiply with 2) or ( multiply by 1/2)
2+2sin2x=0 or 12sinx1/2cosx=1/2
sin2x=2 or sinxcosπ4cosxsinπ4=1/2
which is not possible
(1sinθ1) or sin(xpi4)12
now, the general solution of
sinθ=asinα,aϵ[1,1]
αϵ[π/2,π/2]
sinα=a=12
α=sin1(12)=π4.
is, θ=kπ+(1)kα,kϵz
θ=kπ+(1)kπ4,kϵz
now here, sin(xπ4)=12
So, xπ4=kπ+(1)kπ4
x=kπ+(1)kπ4+π4,kϵz
The required set of solution of x
{kπ+(1)kπ4+π4/kϵz}

1128411_887927_ans_fea65f26cdd14032a953a987794a7aba.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon