sin3x−cos3x=1+sinxcosx.
Solution:- We are given that,
sin3x−cos3x−1+sinxcosx
→ now, we know that a3−b3=(a−b)(a2+ab+b2)
So,
(sinx−cosx)(sin2x+sinxcosx+cos2x)=1+sinxcosx
(sinx−cosx)(1+sinxcosx)−(1+sinxcosx)=0
(sin2x+cos2x=1)
(1+sinxcosx)[(sinx−cosx)−1]=0
So,
1+sinxcosx=0 or sinx−cosx=1
2+2sinxcosx=0 or 1/√2(sinx−cosx)=1/√2
(∵ multiply with 2) or (∵ multiply by 1/√2)
2+2sin2x=0 or 1√2sinx−1/2cosx=1/√2
sin2x=−2 or sinxcosπ4−cosxsinπ4=1/√2
which is not possible
(∵−1≤sinθ≤1) or sin(x−pi4)1√2
→ now, the general solution of
sinθ=asinα,aϵ[−1,1]
αϵ[−π/2,π/2]
sinα=a=1√2
α=sin−1(1√2)=π4.
is, θ=kπ+(−1)kα,kϵz
θ=kπ+(−1)kπ4,kϵz
now here, sin(x−π4)=1√2
So, x−π4=kπ+(−1)kπ4
x=kπ+(−1)kπ4+π4,kϵz
The required set of solution of x
{kπ+(−1)kπ4+π4/kϵz}