wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin3x+sin3x=334sin2x.

Open in App
Solution

Solution
we are given that,
sin3x+sin3x=334sin2x
now, we know that sin3θ=3sinθ4sin3θ
So, 3sinx4sin3x+sin3x=334sin2x
3sinx334sin2x3sin3x=0
3sinx334(2sinxcosx)3sin3x=0
3sinx332sinxcosx3sin3x=0
3sinx(132cosxsin2x)=0 (Take common)
3sinx(cos2x32cosx)=0 (sin2x.cos2x=1)
3sinxcosx(cosx32)=0
3/2(2sinxcosx)(cosx3/2)=0
(sin2x)(cosx3/1)=0 (sin2x=2sinxcosx)
sin2x=0 or cosx=3/2.
2x=kπ,kϵz or cosα=3/2α=π/6
x=kπ/2,kϵz or x=2kπ±π/6,kϵz
The required set of solution of x is
{kπ/2/kϵ2}{2kπ±π/6/kϵz}

1128472_887925_ans_cbeb1334de2f4dbea39d7e7c1a1293c9.Q8

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon