Solution
→ we are given that,
sin3x+sin3x=3√34sin2x
→ now, we know that sin3θ=3sinθ−4sin3θ
So, 3sinx−4sin3x+sin3x=3√34sin2x
∴3sinx−3√34sin2x−3sin3x=0
∴3sinx−3√34(2sinxcosx)−3sin3x=0
∴3sinx−3√32sinxcosx−3sin3x=0
∴3sinx(1−√32cosx−sin2x)=0 (Take common)
∴3sinx(cos2x−√32cosx)=0 (sin2x.cos2x=1)
∴3sinxcosx(cosx−√32)=0
∴3/2(2sinxcosx)(cosx−√3/2)=0
(sin2x)(cosx−√3/1)=0 (∵sin2x=2sinxcosx)
sin2x=0 or cosx=√3/2.
2x=kπ,kϵz or cosα=√3/2⇒α=π/6
x=kπ/2,kϵz or x=2kπ±π/6,kϵz
The required set of solution of x is
{kπ/2/kϵ2}∪{2kπ±π/6/kϵz}