wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin4x+cos4x2sin2x+34sin22x=0.

Open in App
Solution

sin4x+cos4x2sin2x+34sin22x=0
sin4x+cos4x+2sin2x.cos2x2sin2x2sin2x+32sin22x=0
(sin2x+cos2x)212(2sinx.cosx)22sin2x+34sin22x=0
112sin22x2sin2x+34sin22x=0
sin22x42sin2x+1=0
sin22x8sin2x+4=0
say t=sin2x
t28t+4=0
t=8±64162
=6±482
=8±432
=4±23
sin2x=4+23 or sin2x=423=2(23)
Again sin2xϵ[1,1], Hence the only solution possible is
sin2x=423
2x=xπ+(1)nsin1(423)
x=xπ2+(1)nsin1(423)2

1137934_887946_ans_15c119249e5e4423966446d082aee172.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon