sin2x+1x+sin2x+13x−3cos22x+13x=0.
using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin12(2x+1x+2x+13x)cos12(2x+1x−2x+13x)−3cos2(2x+13x)=0
⇒2sin(6x+3+2x+13x)cos12(6x+3−2x−13)−3cos2(2x+13x)=0
⇒2in4x+23xcos2x+13x−3cos22x+13x=0
⇒cos(2x+13x)[2sin2x(2x+13x)−3cos(2x+13x)]=0
⇒cos(2x+13x)[4sin(2x+13x)cos(2x+13x)−3cos(2x+13x)]=0
⇒cos2(2x+13x)[4sin(2x+13x−3)]=0
⇒cos2x+13x=0 or 4sin2x+13x−3=0
⇒cos(2x+13x)=cos(π/2) or sin2x+13x=34
⇒2x+13x=π2 or 2x+13x=sin−1(3/4)
⇒23+13x=π2 or 2x+13x=sin−1(3/4)
⇒13x=π2−23 or 23+13x=sin−1(3/4)
⇒13x=3π−46 or 13x=sin−1(3/4)−2/3
x=23x−4
x=13(sin−13/4−2/3)
x=13sin−13/4−2