wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin2x+1x+sin2x+13x3cos22x+13x=0.

Open in App
Solution

sin2x+1x+sin2x+13x3cos22x+13x=0.
using sinC+sinD=2sin(C+D2)cos(CD2)
2sin12(2x+1x+2x+13x)cos12(2x+1x2x+13x)3cos2(2x+13x)=0
2sin(6x+3+2x+13x)cos12(6x+32x13)3cos2(2x+13x)=0
2in4x+23xcos2x+13x3cos22x+13x=0
cos(2x+13x)[2sin2x(2x+13x)3cos(2x+13x)]=0
cos(2x+13x)[4sin(2x+13x)cos(2x+13x)3cos(2x+13x)]=0
cos2(2x+13x)[4sin(2x+13x3)]=0
cos2x+13x=0 or 4sin2x+13x3=0
cos(2x+13x)=cos(π/2) or sin2x+13x=34
2x+13x=π2 or 2x+13x=sin1(3/4)
23+13x=π2 or 2x+13x=sin1(3/4)
13x=π223 or 23+13x=sin1(3/4)
13x=3π46 or 13x=sin1(3/4)2/3
x=23x4
x=13(sin13/42/3)
x=13sin13/42

1126163_888264_ans_758d766f9c0245a6a6c931fb5f0e80a8.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon