wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin(2x+5π2)3cos(7π2x)=1+2sinx.

Open in App
Solution

sin(2x+5π2)3cos(7π2x)=1+2sinx
sin(θ+7π2)=cosθ
cos(7π2θ)=+sinθ
sin(2x+5π2)=cos2x
cos(7π2x)=sinx
cos2x3sinx=1+2sinx
12sin2x3sinx=1+2sinx
2sin2x+5sinx=0
sinx=0
x=7π(n=0,±1,±2...)

1124765_888100_ans_4555361477f7402cbe464834f9d8741f.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon