wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sin(π6x)+3sin(π2+6x)=3.

Open in App
Solution

sin(π6x)+3sin(π2+6x)=3
sin(6x)+3cos6x=3{sin(πθ)=sinθ}
{sin(π2+θ)=cosθ}
12sin6x+32cos6x=32... [ Dividing both sides by 2]
32cos6x+12sin6x=32
cos6x.cos(π6)+sin6x.sin(π6)=32{cos(π6)=32andsin(π6)=12}
cos(6xπ6)=cos(π6){cos(AB)=cosA.cosB+sinA.sinBcos(π6)=3/2}
Now we know General solution for
cosθ=cosα{θ=α+2nπ,nϵZ}Z intergers (0,±1,±2,±3,±)
Here α=π/6, for
cos(6xπ6)=cosπ/6
The general solution will be
6xπ6=π6+2nπ,nϵZ
6x=π3+2nπ,nϵZ
x=π18+nπ3,nϵZ

1127103_887836_ans_b09b2e2165f8448ab3e29bf0c3a94172.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon