wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sinx+sin2x+sin3x+sin4x=0.

Open in App
Solution

sinx+sin2x+sin3x+sin4x=0
(sin4x+sinx)+(sin3x+sin2x)=0
we know,
{sinC+sinD=2sin(C+D2)cos(CD2)}
2sin(4x+x2)cos(4xx2)+2sin(3x+2x2)cos(3x2x2)=0
2sin(5x2)cos(3x2)+2sin(5x2)cos(x2)
2sin(5x2)[cos(3x2)+cos(x2)]=0
also we know
{cosC+cosD=2cos(C+D2)cos(CD2)}
2sin(5x2)[2cos(3/2x+x/22)cos(3x/2x/22)]=0
4sin(5x2)cosx.cos(x2)=0
Now sin(5x2)=0 or cos=0 or cos(x2)=0
we know, that General solution for
sinθ=0{θ=nπ,nϵZ}.(Z integer [0,±1,±2,±3,±...])
forsin(5x2){5x2=nπ,nϵZ}
sin(5x2{x=25nπ,nϵZ})
also we know General solution for
cosθ=0{θ=(2n+1)π/2,nϵZ}
For cosx=0{x=(2n+1)π/2,nϵZ}
for cos(x2)=0{x2=(2n+1),nϵZ}
cos(x2){x=(2n+1)π,nϵZ}


1125020_887842_ans_063e41e0dba8436081c83d8cb114f269.jpg

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon