sinx+sin2x+sin3x+sin4x=0
⇒(sin4x+sinx)+(sin3x+sin2x)=0
∵ we know,
{sinC+sinD=2sin(C+D2)cos(C−D2)}
⇒2sin(4x+x2)cos(4x−x2)+2sin(3x+2x2)cos(3x−2x2)=0
⇒2sin(5x2)cos(3x2)+2sin(5x2)cos(x2)
⇒2sin(5x2)[cos(3x2)+cos(x2)]=0
also we know
{cosC+cosD=2cos(C+D2)cos(C−D2)}
⇒2sin(5x2)[2cos(3/2x+x/22)cos(3x/2−x/22)]=0
⇒4sin(5x2)cosx.cos(x2)=0
Now sin(5x2)=0 or cos=0 or cos(x2)=0
we know, that General solution for
sinθ=0⇒{θ=nπ,nϵZ}.(Z→ integer [0,±1,±2,±3,±...])
∴forsin(5x2)⇒{5x2=nπ,nϵZ}
sin(5x2⇒{x=25nπ,nϵZ})
also we know General solution for
cosθ=0⇒{θ=(2n+1)π/2,nϵZ}
For cosx=0⇒{x=(2n+1)π/2,nϵZ}
for cos(x2)=0⇒{x2=(2n+1),nϵZ}
cos(x2)⇒{x=(2n+1)π,nϵZ}