wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
sinxsin7x=sin3xsin5x.

Open in App
Solution

sinx.sin7x=sin3x.sin5x
we know that,
{cos(AB)cos(A+B)=2sinA.sinB}
2sinx.sin7x=2sin3x.sin5x
cos6xcos8x=cos2xcos8x
cos6xcos2x=0
also we know that,
{cosCcosD=2sin(C+D2).sin(DC2)}
2sin(6x+2x2).sin(2x6x2)=0
2sin4x.sin(2x)=0
2sin4x.sin2x=0...{sin(θ)=sinθ}
sin4x=0 or sin2x=0
we know , the general solution when
sinθ=0{θ=nπ,nϵZ}=Z integers (0,±1,±2,±3±...)
for θ=4x
sin4x=0{4x=nπ,nϵZ}
{x=nπ4,nϵZ}
also for θ=2x
sinx=0{2x=nπ,nϵZ}
{x=nπ2,nϵZ}

1127265_887874_ans_6eb015c6f5de4335b2975609d530e03d.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon