wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
3sin2x+cos5xcos9x=0.

Open in App
Solution

3sin2x+(cos5scos9x)=0
{cosCcosD=2sin(C+D2).sin(DC2)}
3sin2x+2sin(5x+9x2).sin(9x5x2)=0
3sin2x+2sin7x.sin2x=0.
sin2x(3+2sin7x)=0
sin2x=0 or 3+2sin7x=0
sin2x=0 or sin7x=32
we know, the general solution when
sinθ=0{θ=nπ,nϵZ},Z integer (0.±1,±2,±3±...)
For θ=2x
sin2x=0{2x=nπ,nϵZ}
{x=nπ2,nϵZ}
also we know general solution when
sinθ=sinα={θ=nπ+(1)nα,nϵZ}...(1)
For θ=7xα=4π/3
utsiny=3/2
it is must be in III and IV quadrant
also sinπ3=32
siny=32siny=sin(π+π3)=sin4π3
sin7x=sin(4π/3)
Here θ=7x and α=4π/3
using (1) general solution of sin7x=sin(4π/3) will be
7x=nπ+(1)n4π3,nϵZ
x=nπ7+(1)n4π21,nZ

1127240_887847_ans_d6a0edbf921249ddb9687dea917da356.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon