√3sin2x+(cos5s−cos9x)=0
{∵cosC−cosD=2sin(C+D2).sin(D−C2)}
⇒√3sin2x+2sin(5x+9x2).sin(9x−5x2)=0
⇒√3sin2x+2sin7x.sin2x=0.
⇒sin2x(√3+2sin7x)=0
⇒sin2x=0 or √3+2sin7x=0
⇒sin2x=0 or sin7x=−√32
we know, the general solution when
sinθ=0⇒{θ=nπ,nϵZ},Z→ integer (0.±1,±2,±3±...)
For θ=2x
sin2x=0⇒{2x=nπ,nϵZ}
⇒{x=nπ2,nϵZ}
also we know general solution when
sinθ=sinα={θ=nπ+(−1)nα,nϵZ}...(1)
For θ=7xα=4π/3
∵utsiny=−√3/2
∵ it is must be in III and IV quadrant
⇒ also sinπ3=√32
⇒siny=−√32⇒siny=sin(π+π3)=sin4π3
⇒sin7x=sin(4π/3)
Here θ=7x and α=4π/3
using (1) general solution of sin7x=sin(4π/3) will be
7x=nπ+(−1)n4π3,nϵZ
⇒x=nπ7+(−1)n4π21,nZ