wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
tan2xtan23xtan4x=tan2xtan23x+tan4x.

Open in App
Solution

tan2xtan23xtan4x=tan2xtan23x+tan4x
tan4x(tan2xtan23x1)=tan2xtan23x
tan4x=tan2xtan23xtan2xtan23x1
=tan23xtan2x1tan2xtan23x
=(tan3xtanx)(tan3x+tanx)(1tanxtan3x)(1+tanxtan3x)
[a2b2=(a+b)(ab)]
tan4x=tan(3xx)tan(3x+x)
tan4x=(tan2x)(tan4x)
tan4x(tan2x1)=0
tan4x=0
4x=nπ
x=nπ4
tan2x1=0
tan2x=1
tan2x=tanπ/4
2x=nπ+π/4 (general solution)
x=nπ2+π8

1171023_888233_ans_a22ea83b2a3a43bcbecdba71e1f1daa0.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon