wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations.
Find all the solutions of the equation sin(4x+π4)+cos(4x+5π4)=2 which satisfy the inequality cos2xcos2sin2>2sin4x.

Open in App
Solution

Given
sin(4x+π4)+cos(4x5π4)=2
Let us now consider L.H.S
L.H.S =sin[4x+π4]+cos[4x+5π4]eq(1)
as we know that sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosBsinAsinB
Let us now apply the above froms formation to eq(1)
sin4xcosπ4+cos4xsinπ4+cos4xcos5π4sin4xsin5π4
sin4xcosπ4+cos4xsinπ4+cosx4cos[ππ4]sin4xsin[π+π4]
[180+θ is in QIII cos+vesinve]
sin4xcosπ4+cos4xsinπ4+cos4xcosπ4+sin4xsinπ4
[sin(90θ)=cosθ&cos(90θ)=sinθ]
sin4xcosπ4+cos4xsinπ4+cos4xcos(π2π4)+sin4xsin(π2π4)
sin4xcosπ4+cos4xsinπ4+cos4xsinπ4+sin4xcosπ4
(sinπ4=cosπ4=1/2)
2sin4x[12]+2cos4x[12]
[2=2.2]
22[sin4x+cos4x]2[sin4x+cos4x]eq(2)
[sin2A=2sincosA,cos2A=cos2Asin2]
Let as apply the above transformation to eq(2)
2[sin2(2x)+cos2(2x)]
2[2sin2xcos2x+cos22xsin22x]
[(a+b)2=a2+b2+2ab]
2[2sin2xcos2x+cos22xsin22x]
2[(sin2x+cos2x)2]
2[(01)2]2(1)2
[ x is considered as 180 & as both the fuction ile in Q]
[sin180=0cos180=1]
2 R.H.S
L.H.S = R.H.S

1129465_888981_ans_1760120d834f43d9a50a158858a5ea85.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon