The correct option is A (x,y)=(103,203),(−10,20)
log100|x+y|=12=log10010
⇒|x+y|=10 and |x+y|>0
log10y−log10|x|=log1004=log102
Here, y>0 and |x|>0
⇒log10y|x|=log102
⇒y=2|x|
Case 1: x>0
∵y>0
x+y=10 and y=2x, gives x=103,y=203
Case 2: x>−y and x<0
x+y=10 and y=−2x, gives x=−10,y=20
∴(x,y)=(103,203) and (−10,20)
Hence, option A.