Solve the following equations for x:
(i) 72x+3=1
(ii) 2x+1=4x−3
(iii)25x+3=8x+3
(iv) 42x=132
(v)4x−1×(0.5)3−2x=(18)x
(vi)23x−7=256
(i) 72x+3=1 ⇒72x+3=70∴2x+3=0⇒2x=−3x=−32
(ii) 2x+1=4x−3 = ⇒2x+1=(22)x−3⇒2x+1=22x−6Comparing, we getx+1=2x−61+6=2x−x⇒x=7∴x=7
(iii)25x+3=8x+3
⇒25x+3=(23)x+3⇒25x+3=23x+9Comparing, we get5x+3=3x+9⇒5x−3x=9−3⇒2x=6⇒x=62=3∴x=3
(iv) 42x=132 ⇒(22)2x=125⇒24x=2−5Comparing, we get4x=−5⇒x=−54∴x=−54
(v)4x−1×(0.5)3−2x=(18)x ⇒(22)x−1×(12)3−2x=(123)x⇒22x−2×2−3+2x=2−3x⇒22x−2−3+2x=2−3x⇒24x−5=2−3xComparing, we get4x−5=−3x⇒4x+3x=5⇒7x=5⇒x=57∴x=57
(vi)23x−7=256 = ⇒23x−7=28Comparing, we get⇒3x=8+7=15⇒x=153=5∴x=5