wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations for x:
(i)

(ii)
(iii) tan
−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
(iv)
tan−11-x1+x-12tan−1x = 0, where x > 0
(v) cot
−1x − cot−1(x + 2) = π12, x > 0
(vi) tan
−1(x + 2) + tan−1(x − 2) = tan−1879, x > 0
(vii)
tan-1x2+tan-1x3=π4, 0<x<6
(viii)
(ix)

Open in App
Solution

(i)
(ii)
(iii) We know
tan-1x+tan-1y=tan-1x+y1-xy and tan-1x-tan-1y=tan-1x-y1+xy

tan-1x+1+tan-1x-1+tan-1x=tan-13xtan-1x+1+x-11-x+1×x+1=tan-13x-tan-1xtan-12x2-x2=tan-13x-x1+3x22x2-x2=2x1+3x22-x2=1+3x24x2-1=0x2=14x=±12

(iv)
tan-11-x1+x-12tan-1x=0tan-11-x1+x=12tan-1xtan-11- tan-1x=12tan-1x tan-11- tan-1x=tan-11-x1+xtan-11=32tan-1xπ4=32tan-1xπ6=tan-1xx=13

(v)
cot-1x-cot-1x+2=π12tan-11x+cot-11x+2=π12 cot-1x=tan-11xtan-11x-1x+21+1xx+2=π12 tan-12xx+2x2+2x+1xx+2=π12tan-12x2+2x+1=π122x2+2x+1=tanπ12 2x2+2x+1=tanπ3-π4 2x2+2x+1=tanπ3-tanπ41+tanπ3×tanπ42x2+2x+1=3-13+12x2+2x+1=3-13+1×3+13+12x2+2x+1=23+121x+12=13+12x+1=3+1x=3

(vi) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x+2+tan-1x-2=tan-1879tan-1x+2+x-21-x+2×x-2=tan-18792x1-x2+4=879x5-x2=47979x=20-4x24x2+79x-20=04x2+80x-x-20=04x-1x+20=0x=14 or- 20 x=14 x>0

(vii) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x2+tan-1x3=π4tan-1x2+x31-x2×x3=π4tan-15x66-x26=π45x6-x2=tanπ45x6-x2=15x=6-x2x2+5x-6=0x-1x+6=0x=1 0<x<6

(viii)
We know



tan-1x-2x-4+tan-1x+2x+4=π4tan-1x-2x-4+x+2x+41-x-2x-4×x+2x+4=π4tan-1x2+2x-8+x2-2x-8x-4x+4x2-16-x2+4x-4x+4=π42x2-16-12=tanπ42x2-16-12=12x2-16=-122x2=4x2=2x=±2 tan-1x+tan-1y=tan-1x+y1-xy

(ix)
We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x+2+tan-1x-2=tan-123tan-12+x+2-x1-2+x×2-x=tan-12341-4+x2=23-6+2x2=122x2=18x2=9 x=±3

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon