wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations for x:
(i) tan−12x + tan−13x = nπ + 3π4

(ii) tan−1(x + 1) + tan−1(x − 1) = tan−1831

(iii) tan-114+2 tan-115+tan-116+tan-11x=π4

(iv) sin−1x + sin−12x = π3

(v) 3 sin-12x1+x2-4 cos-11-x21+x2+2 tan-12x1-x2=π3

(vi) cos-1x+sin-1x2=π6

(vii) tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x

(viii) tan (cos−1x) = sincot-112

(ix) tan−11-x1+x-12tan−1x = 0, where x > 0

(x) cot−1x − cot−1(x + 2) = π12, x > 0

(xi) tan-12x1-x2+cot-11-x22x=2π3, x>0

(xii) tan−1(x + 2) + tan−1(x − 2) = tan−1879, x > 0

(xiii) tan-1x2+tan-1x3=π4, 0<x<6

Open in App
Solution

(i) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-12x+tan-13x=nπ+3π4tan-12x+3x1-2x×3x=nπ+3π45x1-6x2=tannπ+3π45x1-6x2=-15x=-1+6x26x2-5x-1=06x+1x-1=0x=-16 As x=1 is not satisfying the equation


(ii) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x+1+tan-1x-1=tan-1831tan-1x+1+x-11-x+1×x-1=tan-18312x1-x2+1=8312x2-x2=83131x=8-4x24x2+31x-8=04x2+32x-x-8=04x-1x+8=0x=14 As x=-8 is not satisfying the equation


(iii) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-114+2tan-115+tan-116+tan-11x=π4tan-114+tan-115+tan-115+tan-116+tan-11x=π4tan-114+151-14×15+tan-115+161-15×16+tan-11x=π4tan-19201920+tan-111302930+tan-11x=π4tan-1919+tan-11129+tan-11x=π4tan-1919+11291-1129×919+tan-11x=π4tan-1235226+tan-11x=π4tan-1235226+1x1-235226×1x=π4235x+226226x-235=tanπ4235x+226226x-235=1235x+226=226x-2359x=-461x=-4619


(iv) We know
sin-1x+sin-1y=sin-1x1-y2+y1-x2

sin-1x+sin-12x=π3sin-1x+sin-12x=sin-132sin-1x-sin-132=-sin-12xsin-1x1-34+321-x2=-sin-12xsin-1x2+321-x2=sin-1-2xx2+321-x2=-2xx+31-x2=-4x5x=-31-x2Squaring both the sides,25x2=3-3x228x2=3x=±1237


(v)
3sin-12x1+x2-4cos-11-x21+x2+2tan-12x1-x2=π36tan-1x-8tan-1x+4tan-1x=π3 2tan-1x=sin-12x1+x2, 2tan-1x=cos-11-x21+x2 and 2tan-1x=tan-12x1-x2 2tan-1x=π3tan-1x=π6 x=tanπ6x=13

x=13

(vi)

cos-1x+sin-1x2=π6cos-1x+sin-1x2=sin-112cos-1x=sin-112-sin-1x2cos-1x=sin-1121-x24-x21-14 sin-1x-sin-1y=sin-1x1-y-y1-x2cos-1x=sin-13x4-3x4sin-11-x2=sin-13x4-3x41-x2=0Squaring both the sides,1-x2=0 x=±1 As x=-1 is not satisfying the equation

(vii) We know
tan-1x+tan-1y=tan-1x+y1-xy and tan-1x-tan-1y=tan-1x-y1+xy

tan-1x+1+tan-1x-1+tan-1x=tan-13xtan-1x+1+x-11-x+1×x+1=tan-13x-tan-1xtan-12x2-x2=tan-13x-x1+3x22x2-x2=2x1+3x22-x2=1+3x24x2-1=0x2=14x=±12


(viii)
tancos-1x=sincot-112 tancos-1x=sintan-12 cot-1x=tan-11xtantan-11-x2x=sinsin-121+4 cos-1x=tan-11-x2x and tan-1x=sin-1x1+x21-x2x=25Squaring both the sides,1-x2x2=455-5x2=4x29x2=5x=±53

(ix)
tan-11-x1+x-12tan-1x=0tan-11-x1+x=12tan-1xtan-11- tan-1x=12tan-1x tan-11- tan-1x=tan-11-x1+xtan-11=32tan-1xπ4=32tan-1xπ6=tan-1xx=13

(x)

cot-1x-cot-1x+2=π12tan-11x+cot-11x+2=π12 cot-1x=tan-11xtan-11x-1x+21+1xx+2=π12 tan-12xx+2x2+2x+1xx+2=π12tan-12x2+2x+1=π122x2+2x+1=tanπ12 2x2+2x+1=tanπ3-π4 2x2+2x+1=tanπ3-tanπ41+tanπ3×tanπ42x2+2x+1=3-13+12x2+2x+1=3-13+1×3+13+12x2+2x+1=23+121x+12=13+12x+1=3+1x=3


(xi) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-12x1-x2+cot-11-x22x=2π3tan-12x1-x2+tan-12x1-x2=2π3 cot-1x=tan-11xtan-12x1-x2=π32tan-1x=π3 2tan-1x tan-12x1-x2tan-1x=π6x=tanπ6x=13

(xii) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x+2+tan-1x-2=tan-1879tan-1x+2+x-21-x+2×x-2=tan-18792x1-x2+4=879x5-x2=47979x=20-4x24x2+79x-20=04x2+80x-x-20=04x-1x+20=0x=14 or- 20 x=14 x>0

(xiii) We know
tan-1x+tan-1y=tan-1x+y1-xy

tan-1x2+tan-1x3=π4tan-1x2+x31-x2×x3=π4tan-15x66-x26=π45x6-x2=tanπ45x6-x2=15x=6-x2x2+5x-6=0x-1x+6=0x=1 0<x<6

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Even and Odd Extension
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon