Solve the following equations for x:
(i) tan−12x + tan−13x = nπ +
(ii) tan−1(x + 1) + tan−1(x − 1) = tan−1
(iii)
(iv) sin−1x + sin−12x =
(v)
(vi)
(vii) tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
(viii) tan (cos−1x) = sin
(ix) tan−1tan−1x = 0, where x > 0
(x) cot−1x − cot−1(x + 2) = , x > 0
(xi)
(xii) tan−1(x + 2) + tan−1(x − 2) = tan−1, x > 0
(xiii)