wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
(i) cos θ+cos 2θ+cos 3θ=0
(ii) cos θ+cos 3 θ-cos 2 θ=0
(iii) sin θ+sin 5θ=sin 3θ
(iv) cos θ cos 2θ cos 3θ=14
(v) cos θ+sin θ=cos 2θ+sin 2θ
(vi) sin θ+sin 2θ+sin 3=0
(vii) sin θ+sin 2θ+sin 3θ+sin 4θ=0
(viii) sin 3θ-sin θ=4 cos2 θ-2
(ix) sin 2θ-sin 4θ+sin 6θ=0

Open in App
Solution

(i) cos θ + cos 2θ + cos 3θ = 0
Now,
(cosθ + cos3θ) + cos2θ = 0 2 cos 4θ2 cos 2θ2 + cos2θ = 0 2 cos2θ cosθ + cos2θ = 0 cos2θ ( 2 cosθ + 1) = 0

cos 2θ = 0 or, 2 cos θ + 1 = 0
cos 2θ = cos π2 or cos θ =-12= cos 2π3
2θ = (2n + 1) π2, n Z or θ = 2mπ ± 2π3, m Z
θ = (2n + 1)π4, n Z or θ= 2mπ ± 2π3, m Z

(ii)

(cosθ + cos3θ) - cos2θ = 0 2 cos 4θ2 cos 2θ2 - cos2θ = 0 2 cos2θ cosθ - cos2θ = 0 cos2θ ( 2 cosθ - 1) = 0

cos2θ = 0 or 2 cosθ - 1 = 0
cos2θ = cos π2 or cosθ = 12 cosθ = cosπ3

2θ = (2n + 1)π2, n Z or θ = 2mπ ± π3, m Z

θ = (2n + 1)π4, n Z or θ = 2mπ ± π3, m Z

(iii) sinθ + sin5θ = sin3θ
2 sin6θ2 cos 4θ2 = sin3θ2 sin3θ cos2θ = sin3θ2 sin3θ cos2θ - sin3θ = 0 sin3θ (2 cos2θ - 1) = 0

sin3θ = 0 or (2 cos2θ - 1) = 0
sin3θ = sin 0 or cos2θ = 12 = cos π3
3θ = nπ or 2θ = 2mπ ± π3
θ = nπ3, n Z or θ = mπ ± π6, m Z

(iv) cosθ cos2θ cos3θ = 14cosθ+2θ+cos2θ-θ2cos3θ=142cos3θ+cosθcos3θ=12cos23θ+2cosθcos3θ-1=02cos23θ-1+2cosθcos3θ=0cos6θ+cos4θ+cos2θ=0cos6θ+cos2θ+cos4θ=02cos4θcos2θ+cos4θ=0cos4θ2cos2θ+1=0cos4θ=0 or 2cos2θ+1=0cos4θ=0 or cos2θ=-12cos4θ=cosπ2 or cos2θ=cos2π34θ=2n+1π2, nZ or 2θ=2mπ±2π3, mZθ=2n+1π8, nZ or θ=mπ±π3, mZ


(v) cosθ+ sinθ = cos2θ + sin2θ

cosθ - cos2θ = sin2θ - sinθ- 2 sin 3θ2 sin -θ2 = 2 sin θ2 cos 3θ2 2 sin 3θ2 sin θ2 = 2 sin θ2 cos 3θ2 2 sin θ2 sin 3θ2 - cos 3θ2 = 0

sin θ2 = 0 or sin 3θ2 - cos 3θ2 = 0

sin θ2 = sin 0 or sin 3θ2 = cos 3θ2

θ2 = nπ, n Z or cos 3θ2 = cos π2 - 3θ2

θ = 2nπ, n Z or 3θ2 = 2mπ ± π2 - 3θ2, m Z

θ = 2nπ, n Z or 3θ2 = 2mπ + π2 - 3θ2, m Z (Taking negative sign will give absurd result.)

θ = 2nπ, n Z or θ = 2mπ3 + π6, m Z


(vi) sinθ + sin2θ + sin3θ = 0

sinθ + sin3θ + sin2θ = 0 2 sin 4θ2 cos 2θ2 + sin2θ = 0 2 sin2θ cosθ + sin2θ = 0 sin2θ (2 cosθ + 1) = 0

sin2θ = 0 or 2 cosθ + 1 = 0
sin2θ = sin 0 or cosθ =-12 cosθ= cos 2π3
θ= nπ2, n Z or θ = 2mπ ± 2π3, m Z

(vii) sinθ + sin2θ + sin3θ + sin4θ = 0

sin3θ + sinθ + sin4θ + sin2θ = 0 2 sin 4θ2 cos 2θ2 + 2 sin 6θ2 cos 2θ2 = 0 2 sin2θ cosθ + 2 sin3θ cos θ = 0 2 cosθ ( sin2θ + sin3θ ) = 0 2 cosθ 2 sin 5θ2 cos θ2 = 0 4 cosθ sin 5θ2 cos θ2 = 0
cos θ = 0 , sin 5θ2 = 0 or cos θ2 = 0
cos θ = cos π2 , sin 5θ2 = sin 0 or cos θ2 = cos π2
θ = (2n + 1) π2, nZ or 5θ2= nπ , n Z or, θ2 = (2n+ 1) π2 , n Z
θ = (2n + 1) π2 , n Z or θ= 2nπ5 , n Z or θ = (2n + 1)π, n Z


(viii) sin3θ - sinθ = 4 cos2θ - 2
sin3θ - sinθ = 2 ( 2 cos2θ - 1) 2 sin 2θ2 cos 4θ2 = 2 cos 2θ 2 sinθ cos2θ = 2 cos2θ sinθ cos2θ = cos2θ cos2θ ( sinθ - 1) = 0
cos 2θ = 0 or sinθ - 1 = 0
cos 2θ = cos π2 or sinθ = 1sinθ = sin π2
2θ = (2n + 1)π2, n Z or θ = nπ + (-1)n π2 , n Z
θ = (2n+ 1)π4 , nZ or θ = nπ + (-1)n π2 , nZ


(ix) sin 2θ - sin 4θ + sin 6θ = 0.
2 sin 8θ2 cos 4θ2 - sin4θ = 0 2 sin4θ cos2θ - sin4θ = 0 sin4θ ( 2 cos2θ - 1) = 0
sin 4θ = 0 or 2 cos2θ - 1 = 0
4θ = nπ , n Z or cos2θ = 12 cos2θ= cos π3
θ = nπ4, n Z or θ = nπ ± π6, n Z

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon