wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:

(i) cotθ+tanθ=2 [NCERT EXEMPLAR]
(ii) 2sin2θ=3cosθ, 0θ2π [NCERT EXEMPLAR]
(iii) secθcos5θ+1=0, 0<θ<π2 [NCERT EXEMPLAR]
(iv) 5cos2θ+7sin2θ-6=0 [NCERT EXEMPLAR]
(v) sinx-3sin2x+sin3x=cosx-3cos2x+cos3x [NCERT EXEMPLAR]

Open in App
Solution

(i)
cotθ+tanθ=21tanθ+tanθ=2tan2θ+1=2tanθtan2θ-2tanθ+1=0tanθ-12=0
tanθ=1=tanπ4θ=nπ+π4, nZ tanθ=tanαθ=nπ+α, nZ

(ii)
2sin2θ=3cosθ21-cos2θ=3cosθ2cos2θ+3cosθ-2=02cosθ-1cosθ+2=0
cosθ=12 or cosθ=-2
But, cosθ=-2 is not possible. -1cosθ1
cosθ=12=cosπ3θ=2nπ±π3,nZ
Putting n = 0 and n = 1, we get
θ=π3,5π3 0θ2π

(iii)
secθcos5θ+1=0cos5θcosθ+1=0cos5θ+cosθ=02cos3θ cos2θ=0
cos3θ=0 or cos2θ=03θ=2n+1π2,nZ or 2θ=2m+1π2,mZθ=2n+1π6 or θ=2m+1π4
Putting n = 0 and m = 0, we get
θ=π6,π4 0<θ<π2

(iv)
5cos2θ+7sin2θ-6=05cos2θ+71-cos2θ-6=0-2cos2θ+1=0cos2θ=12=cos2π4θ=nπ±π4,nZ cos2θ=cos2αθ=nπ±α,nZ

(v)
sinx-3sin2x+sin3x=cosx-3cos2x+cos3x2sin2xcosx-3sin2x=2cos2xcosx-3cos2xsin2x2cosx-3=cos2x2cosx-3sin2x-cos2x2cosx-3=0
sin2x-cos2x=0 or 2cosx-3=0sin2x=cos2x or cosx=32tan2x=1 or cosx=32
But, cosx=32 is not possible. -1cosx1
tan2x=1=tanπ42x=nπ+π4, nZx=nπ2+π8, nZ

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon