wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
(i) sin2 θ-cos θ=14
(ii) 2 cos2 θ-5 cos θ+2=0
(iii) 2 sin2 x+3 cos x+1=0
(iv) 4 sin2 θ-8 cos θ+1=0
(v) tan2 x+1-3 tan x-3=0
(vi) 3 cos2 θ-23 sin θ cos θ-3 sin2 θ=0
(vii) cos 4 θ=cos 2 θ

Open in App
Solution

(i) sin2θ - cos θ = 14
1 - cos2θ - cosθ = 144 - 4 cos2θ - 4 cosθ = 1 4 cos2θ + 4 cosθ - 3= 0 4 cos2θ + 6 cosθ - 2 cosθ - 3 = 02 cosθ (2 cosθ + 3) - 1(2 cosθ + 3) = 0 (2 cosθ + 3) (2 cosθ -1) = 0

(2 cosθ - 1) = 0 or 2 cosθ + 3 = 0
cosθ =12 or cosθ = -32

cosθ=-32 is not possible.
cosθ= 12 cosθ = cosπ3 θ = 2nπ ± π3, nZ

(ii)
2 cos2θ - 5 cosθ + 2 = 0 2 cos2θ - 4 cosθ - cosθ + 2 = 02 cosθ ( cosθ - 2) -1 ( cosθ - 2) = 0( cosθ - 2) ( 2 cosθ - 1) = 0

( cos θ - 2 ) = 0 or, ( 2 cos θ - 1) = 0
cosθ = 2 is not possible.

2 cosθ - 1 = 0 cosθ = 12 cosθ= cos π3 θ = 2nπ ± π3, nZ

(iii)
2 sin2x + 3 cosx + 1 = 0 2 - 2 cos2x + 3 cosx + 1 = 0 2 cos2x -3 cosx - 3 = 0 2 cos2x - 23 cosx + 3 cosx - 3 = 0 2 cosx (cosx - 3) + 3 (cosx - 3) = 0 (2 cosx + 3) (cosx - 3) = 0

(2 cosx + 3) = 0 or (cosx - 3) =0

cos x = 3 is not possible.
2 cosx + 3 =0 cosx =-32 cosx = cos 5π6 x = 2nπ ± 5π6, n


(iv)
4sin2θ-8cosθ+1=0
4 - 4 cos2θ - 8 cosθ + 1 = 0 4 cos2θ + 8 cosθ - 5 = 0 4 cos2θ + 10 cosθ - 2 cosθ - 5 = 0 2 cosθ (2 cosθ + 5 ) -1 (2 cosθ + 5) = 0 (2 cosθ - 1) (2 cosθ + 5) = 0

(2 cosθ - 1) = 0 or (2 cosθ + 5) = 0
Now,
2 cos θ + 5 = 0 cos θ =-52 (It is not possible.)
2 cosθ - 1 = 0 cosθ = 12 cosθ = cos π3 θ = 2nπ ± π3, nZ


(v)
tan2x + (1 - 3) tanx - 3 = 0
tan2x + tanx - 3 tanx - 3 = 0tanx (tanx + 1) -3 (tanx + 1) = 0 (tanx - 3) (tanx +1) = 0

(tan x - 3) = 0 or (tan x + 1) = 0
Now,

tanx - 3 = 0 tanx = 3 tanx = tan π3 x = nπ + π3, nZ
And,

tanx =-1 tanx = tan-π4 x = mπ - π4, mZ


(vi)
3 cos2θ - 23 sinθ cosθ - 3 sin2θ = 0
Now,
3 (cos2θ - sin2θ) - 3 sin2θ = 0 3 cos2θ - 3 sin2θ = 03 (3 cos2θ - sin2θ) = 0 (3 cos2θ - sin2θ) = 0 sin2θcos2θ = 3 tan2θ = tan π3 2θ = nπ + π3, nZ θ = nπ2 + π6, nZ



(vii)

cos4θ = cos2θ 4θ = 2nπ ± 2θ , nZ

On taking positive sign, we have:

4θ = 2nπ + 2θ2θ = 2nπθ = nπ, n Z
On taking negative sign, we have:

4θ = 2nπ - 2θ 6θ = 2nπ θ = nπ3, nZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon