1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Solve the fol...
Question
Solve the following equations:
(i)
sin
2
x
-
cos
x
=
1
4
(ii)
2
cos
2
x
-
5
cos
x
+
2
=
0
(iii)
2
sin
2
x
+
3
cos
x
+
1
=
0
(iv)
4
sin
2
x
-
8
cos
x
+
1
=
0
(v)
tan
2
x
+
1
-
3
tan
x
-
3
=
0
(vi)
3
cos
2
x
-
2
3
sin
x
cos
x
-
3
sin
2
x
=
0
(vii)
cos
4
x
=
cos
2
x
Open in App
Solution
(i)
sin
2
x
-
cos
x
=
1
4
⇒
1
-
cos
2
x
-
cos
x
=
1
4
⇒
4
-
4
cos
2
x
-
4
cos
x
=
1
⇒
4
cos
2
x
+
4
cos
x
-
3
=
0
⇒
4
cos
2
x
+
6
cos
x
-
2
cos
x
-
3
=
0
⇒
2
cos
x
(
2
cos
x
+
3
)
-
1
(
2
cos
x
+
3
)
=
0
⇒
(
2
cos
x
+
3
)
(
2
cos
x
-
1
)
=
0
⇒
(
2
cos
x
-
1
)
=
0
or
2
cos
x
+
3
=
0
⇒
cos
x
=
1
2
or
cos
x
=
-
3
2
cos
x
=
-
3
2
is not possible.
∴
cos
x
=
1
2
⇒
cos
x
=
cos
π
3
⇒
x
=
2
n
π
±
π
3
,
n
∈
Z
(ii)
2
cos
2
x
-
5
cos
x
+
2
=
0
⇒
2
cos
2
x
-
4
cos
x
-
cos
x
+
2
=
0
⇒
2
cos
x
(
cos
x
-
2
)
-
1
(
cos
x
-
2
)
=
0
⇒
(
cos
x
-
2
)
(
2
cos
θ
-
1
)
=
0
⇒
(
cos
x
-
2
)
=
0
or,
(
2
cos
x
-
1
)
=
0
cos
x
=
2
is not possible.
∴
2
cos
x
-
1
=
0
⇒
cos
x
=
1
2
⇒
cos
x
=
cos
π
3
⇒
x
=
2
n
π
±
π
3
,
n
∈
Z
(iii)
2
sin
2
x
+
3
cos
x
+
1
=
0
⇒
2
-
2
cos
2
x
+
3
cos
x
+
1
=
0
⇒
2
cos
2
x
-
3
cos
x
-
3
=
0
⇒
2
cos
2
x
-
2
3
cos
x
+
3
cos
x
-
3
=
0
⇒
2
cos
x
(
cos
x
-
3
)
+
3
(
cos
x
-
3
)
=
0
⇒
(
2
cos
x
+
3
)
(
cos
x
-
3
)
=
0
⇒
(
2
cos
x
+
3
)
=
0
or
(
cos
x
-
3
)
=
0
cos
x
=
3
is not possible.
∴
2
cos
x
+
3
=
0
⇒
cos
x
=
-
3
2
⇒
cos
x
=
cos
5
π
6
⇒
x
=
2
n
π
±
5
π
6
,
n
∈
(iv)
4
sin
2
x
-
8
cos
x
+
1
=
0
⇒
4
-
4
cos
2
x
-
8
cos
x
+
1
=
0
⇒
4
cos
2
x
+
8
cos
x
-
5
=
0
⇒
4
cos
2
x
+
10
cos
x
-
2
cos
x
-
5
=
0
⇒
2
cos
x
(
2
cos
x
+
5
)
-
1
(
2
cos
x
+
5
)
=
0
⇒
(
2
cos
x
-
1
)
(
2
cos
x
+
5
)
=
0
⇒
(
2
co
s
x
-
1
)
=
0
or
(
2
cos
x
+
5
)
=
0
Now,
2
cos
x
+
5
=
0
⇒
cos
x
=
-
5
2
(It is not possible.)
∴
2
cos
x
-
1
=
0
⇒
cos
x
=
1
2
⇒
cos
x
=
cos
π
3
⇒
x
=
2
n
π
±
π
3
,
n
∈
Z
(v)
tan
2
x
+
(
1
-
3
)
tan
x
-
3
=
0
⇒
tan
2
x
+
tan
x
-
3
tan
x
-
3
=
0
⇒
tan
x
(
tan
x
+
1
)
-
3
(
tan
x
+
1
)
=
0
⇒
(
tan
x
-
3
)
(
tan
x
+
1
)
=
0
⇒
(
tan
x
-
3
)
=
0
or
(
tan
x
+
1
)
=
0
Now,
tan
x
-
3
=
0
⇒
tan
x
=
3
⇒
tan
x
=
tan
π
3
⇒
x
=
n
π
+
π
3
,
n
∈
Z
And,
tan
x
=
-
1
⇒
tan
x
=
tan
-
π
4
⇒
x
=
m
π
-
π
4
,
m
∈
Z
(vi)
3
cos
2
x
-
2
3
sin
x
cos
x
-
3
sin
2
x
=
0
Now,
3
(
cos
2
x
-
sin
2
x
)
-
3
sin
2
x
=
0
⇒
3
cos
2
x
-
3
sin
2
x
=
0
⇒
3
(
3
cos
2
x
-
sin
2
x
)
=
0
⇒
(
3
cos
2
x
-
sin
2
x
)
=
0
⇒
sin
2
x
cos
2
x
=
3
⇒
tan
2
x
=
tan
π
3
⇒
2
x
=
n
π
+
π
3
,
n
∈
Z
⇒
x
=
n
π
2
+
π
6
,
n
∈
Z
(vii)
cos
4
x
=
cos
2
x
⇒
4
x
=
2
n
π
±
2
x
,
n
∈
Z
On taking positive sign, we have:
4
x
=
2
n
π
+
2
x
⇒
2
x
=
2
n
π
⇒
x
=
n
π
,
n
∈
Z
On taking negative sign, we have:
4
x
=
2
n
π
-
2
x
⇒
6
x
=
2
n
π
⇒
x
=
n
π
3
,
n
∈
Z
Suggest Corrections
0
Similar questions
Q.
Solve the following equations:
(i)
sin
2
θ
-
cos
θ
=
1
4
(ii)
2
cos
2
θ
-
5
cos
θ
+
2
=
0
(iii)
2
sin
2
x
+
3
cos
x
+
1
=
0
(iv)
4
sin
2
θ
-
8
cos
θ
+
1
=
0
(v)
tan
2
x
+
1
-
3
tan
x
-
3
=
0
(vi)
3
cos
2
θ
-
2
3
sin
θ
cos
θ
-
3
sin
2
θ
=
0
(vii)
cos
4
θ
=
cos
2
θ
Q.
Solve the following equations:
(i)
cos
x
+
cos
2
x
+
cos
3
x
=
0
(ii)
cos
x
+
cos
3
x
-
cos
2
x
=
0
(iii)
sin
x
+
sin
5
x
=
sin
3
x
(iv)
cos
x
cos
2
x
cos
3
x
=
1
4
(v)
cos
x
+
sin
x
=
cos
2
x
+
sin
2
x
(vi)
sin
x
+
sin
2
x
+
sin
3
=
0
(vii)
sin
x
+
sin
2
x
+
sin
3
x
+
sin
4
x
=
0
(viii)
sin
3
x
-
sin
x
=
4
cos
2
x
-
2
(ix)
sin
2
x
-
sin
4
x
+
sin
6
x
=
0
Q.
Find the discriminant of each of the following equations:
(i)
2
x
2
-
7
x
+
6
=
0
(ii)
3
x
2
-
2
x
+
8
=
0
(iii)
2
x
2
-
5
2
x
+
4
=
0
(iv)
3
x
2
+
2
2
x
-
2
3
=
0
(v)
x
-
1
2
x
-
1
=
0
(vi)
1
-
x
=
2
x
2
2
x
2
−
7
x
+
6
=
0
2
x
2
−
7
x
+
6
=
0
Q.
Write the discriminant of the following quadratic equations:
(i) 2x
2
− 5x + 3 = 0
(ii) x
2
+ 2x + 4 = 0
(iii) (x − 1) (2x − 1) = 0
(iv) x
2
− 2x + k = 0, k ∈ R
(v)
3
x
2
+
2
2
x
-
2
3
=
0
(vi) x
2
− x + 1 = 0
(vii) (x + 5)
2
= 2(5x – 3)