(i)√2x−4−√x+5=1
Squaring both sides, we get
(√2x−4−√x+5)2=1 which is of the form (a−b)2
⇒(√2x−4)2+(√x+5)2−2√(2x−4)(x+5)=1 using (a−b)2=a2+b2−2ab
⇒2x−4+x+5−2√(2x−4)(x+5)=1
⇒3x+1−2√(2x−4)(x+5)−1=0
⇒3x−2√(2x−4)(x+5)=0
⇒2√(2x−4)(x+5)=3x
squaring both sides, we get
4(2x−4)(x+5)=9x2
⇒x2−24x+80=0 on simplifying
⇒(x−20)(x−4)=0
∴x=20,4
But for the value x=20, we have
√2x−4−√x+5=√2×20−4−√20+5=√40−4−√25=√16−√25=4−5≠1
and for x=4 we have
√2x−4−√x+5=√2×4−4−√4+5=√8−4−√9=√4−√9=2−3≠1
Since L.H.S≠ R.H.S x=4,20 is not the solution to above problem
(ii)√x+√x+√1−x=1
⇒√x+√1−x=1−√x
Squaring both sides, we get
⇒x+√1−x=1+x−2√x
⇒√1−x=1−2√x
Squaring on both sides, we get
⇒1−x=1+4x−4√x
⇒−5x=−4√x
Squaring both sides, we get
⇒25x2=16x
⇒x(25x−16)=0
∴x=0,1625
For x=0,√x+√x+√1−x=0+√0+√1−0=1
For x=1625,√1625+√1625+√1−1625
=45+√1625+√25−1625
=45+√1625+√925
=45+√1625+35=45+√16+1525=45+3125≠1
Hence x=0 is the only solution.
(iii)x2−4x+1+3=0
⇒x2−4x+4=0
⇒x2−2×x×2+22=0
⇒(x−2)2=0
∴x=2