wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations:
(i) tan θ+tan 2θ+tan 3θ=0
(ii) tan θ+tan 2θ=tan 3θ
(iii) tan 3θ+tan θ=2tan 2θ

Open in App
Solution

(i)
We have:
tan θ + tan 2θ + tan 3θ = 0
Now,

tanθ+ tan2θ + tan (θ + 2θ) = 0tanθ + tan2θ + tan θ + tan 2θ1 - tan θ tan 2θ = 0 (tanθ + tan2θ) (1 - tanθ tan2θ) + tanθ + tan2θ= 0(tanθ + tan2θ) (2 - tanθ tan2θ) = 0
tan θ + tan 2θ = 0 or 2 - tanθ tan2θ = 0

Now,
tanθ + tan2θ = 0 tanθ = - tan2θ tanθ = tan -2θ θ = nπ - 2θ 3θ = nπ θ = nπ3, nZ
And,

2 - tanθ tan2θ = 0 tanθ tan2θ = 2 sinθcosθsin2θcos2θ = 2 2 sin2θ cosθcosθ = 2 cos2θ - 2 sin2θ 4 sin2θ = 2 cos2θ tan2θ =12 tan2θ = tan2α θ = mπ + α, mZ, α = tan-1 12

θ = nπ3, nZ or θ = mπ + α, mZ
Here,
α= tan-112

(ii)
Given:
tanθ+ tan2θ = tan3θ
Now,
tanθ + tan2θ = tan (θ + 2θ)tanθ + tan 2θ = tanθ + tan2θ1 - tanθ tan2θ tanθ + tan2θ - tanθ + tan2θ1 - tanθ tan2θ = 0 (tanθ + tan2θ) (1 - tanθ tan2θ) - (tanθ + tan2θ) = 0 (tanθ + tan 2θ) (1 - tanθ tan2θ - 1) = 0 (tanθ + tan2θ) (- tanθ tan2θ) = 0

tan θ + tan 2θ = 0 or tanθ tan2θ = 0
Now,
tan θ + tan 2θ = 0 tan θ = - tan 2θ tan θ = tan -2θ θ = nπ - 2θ, nZ 3θ = nπ θ = nπ3, nZ
And,

tanθ tan2θ = 0 sinθcosθ sin2θcos2θ = 0 2 sin2θcos2θ - sin2θ = 0 sin2θ =0 sin2θ = sin20 θ = mπ, mZ

θ = nπ3, nZ or θ = mπ, mZ

(iii)
Given:
tan3θ + tanθ = 2 tan2θ
Now,
tan3θ - tan2θ = tan2θ - tanθ tanθ (1 + tan3θ tan2θ) = tanθ (1 + tan2θ tanθ) tan A - B =tan A - tan B1 + tan A tan B tanθ (1 + tan3θ tan2θ - 1 - tan2θ tanθ)= 0tanθ tan2θ (tan3θ - tanθ)= 0

tan 2θ = 0 or, tan θ = 0 or, tan3θ - tanθ = 0
And,
tan 2θ = 0 2θ = nπ θ = nπ2, nZ
Or,
tan 3θ - tan θ = 0 tan 3θ = tan θ 3θ = nπ + θ 2θ =nπ θ = 2, nZ
And,
tan θ = 0 θ = mπ, mZ

θ = nπ2, nZ or θ = mπ, mZ

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon