(i) We have: tan x + tan 2x + tan 3x = 0
Now,
tanx+ tan2x + tan (x+ 2x) = 0
⇒tanx + tan2x + tan x+ tan 2x1 - tan x tan 2x = 0
⇒ (tanx + tan2x) (1 - tanxtan2x) + tanx + tan2x= 0
⇒(tanx + tan2x) (2 - tanx tan2x) = 0
⇒ tan x+ tan 2x= 0 or 2 - tanx tan2x = 0
Now,
tanx + tan2x = 0
⇒ tanx = - tan2x
⇒ tanx = tan -2x
⇒ x = nπ - 2x
⇒ 3x = nπ
⇒ x= nπ3, n∈Z
And,
2 - tanx tan2x = 0
⇒ tanx tan2x = 2
⇒ sinx cosx sin2x cos2x = 2
⇒ 2 sin2x cosx cosx = 2 cos2x - 2 sin2x
⇒ 4 sin2x= 2 cos2x
⇒ tan2x=12
⇒ tan2x = tan2α
⇒x = mπ + α, m ∈ Z, α = tan-1 12
∴ x= nπ3, n∈Z or x = mπ + α, m∈Z
Here,
α= tan-112
(ii) Given:
tanx+ tan2x = tan3x
Now,
tanx+ tan2x = tan (x + 2x)
⇒tanx + tan 2x = tanx + tan2x1- tanx tan2x
⇒ tanx+ tan2x - tanx + tan2x1- tanx tan2x = 0
⇒ (tanx + tan2x) (1- tanx tan2x) - (tanx + tan2x) = 0
⇒ (tanx+ tan 2x) (1- tanx tan2x -1) = 0⇒ (tanx + tan2x) (- tanx tan2x) = 0
⇒ tan x + tan 2x= 0 or tanx tan2x= 0
Now,
tan x+ tan 2x = 0
⇒ tan x = - tan 2x
⇒ tan x= tan -2x
⇒ x= nπ - 2x, n∈Z
⇒ 3x = nπ
⇒x= nπ3, n∈Z
And,
tanx tan2x = 0
⇒ sinxcosx sin2xcos2x = 0
⇒ 2 sin2xcos2x - sin2x = 0
⇒ sin2x =0
⇒ sin2x = sin20
⇒ x = mπ, m∈Z
∴ x= nπ3, n∈Z or x= mπ, m∈Z
(iii) Given: tan3x+ tanx= 2 tan2x
Now,
tan3x - tan2x= tan2x- tanx
⇒ tanx (1 + tan3x tan2x) = tanx(1 + tan2x tanx)
(tan(A−B)=tanA−tanB1+tanAtanB)
⇒tanx (1 + tan3xtan2x - 1 - tan2x tanx)= 0
⇒tanx tan2x (tan3x - tanx)= 0
⇒ tan 2x = 0 or, tan x= 0 or, tan3x- tanx = 0
And, tan 2x = 0 ⇒ 2x = nπ
⇒ x = nπ2, n∈Z
Or, tan 3x - tan x = 0
⇒ tan 3x= tan x
⇒ 3x= nπ + x
⇒ 2x=nπ
⇒ x = nπ2, n∈Z
And, tanx = 0
⇒ x = mπ, m∈Z
∴ x= nπ2, n∈Z or x = mπ, m∈Z